Model Predictive Control (MPC)

Predictive, Optimization Based Planning Method

USAGE OF THE METHOD

explicit consideration of

solving control problems

PROBLEM STATEMENT

The approach determines a predictive and optimal controller output with

constrains based on a vehicle model (kinematic and

dynamic). This is realized by utilizing iterative online optimization algorithms.
The MPC approach is well established in industry, originally developed for

in the domain of process engineering [1].

The optimization scheme, which is solved in each iteration is visualized in the

following graphic.

Past

Path data

w(~|k:)\

Ak + 2|k)—|

Ak + 1|k)—]

A(k|k)—_ T,

——

Future

Prediction
9(-1k)

=

Control input bound
Umax

Control input

Path Data

Wik

Z

UNIVERSITY

Fakultat Maschinenbau

PATH-FOLLOWING CONTROL FOR AUTOMATED DRIVING [5,6]

General Task
Steering a vehicle autonomously along a given reference path
Velocity along the reference path is not fixed a priori. When to be where is
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. Path convergence: The system output y converges to the set P such that

. Velocity convergence: The path velocity §(t) converges to a predefined evolution

. Constraint satisfaction: The state and input constraints X and U are satisfied

not predefined. This is typical for a path-following problem.
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The Implementation follows roughly the following concept.
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The MPC approach is not only limited for classical path following tasks. More

sophisticated tasks like

Green light optimal speed advisory [2,3], Collison

avoidance [4], etc. can be easily realized.

— - (c0) >
g o= ® ~1@®
E 50 4
= 40 1
: ©
Q.
9
E 20 A @@@
L 10 1 10
S o 1 2 7 B
g At ) T T 1 T
- 0 500 1000 1500 2000 2500 3000 3500
Route [m]
—— Desired Velocity based on map data
(Considers curve radii & speed limits)
—— Optimized Vehicle Trajectory
(Considers e.g. powertrain model)
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Solution Strategy
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Implementation Approach [acado.sourceforge.net]

ACADO toolkit

Tutorial Example: Time Optimal Control of a Rocket

X in m

(a) Reference path

Mathematical Formulation:
P - DifferentialState s,V,m;
minimize Control u
(v ()am(-)u().T Paramever b
DifferentialEquation £( 0.0, T )
subject to o e e baem T3
(1) = v(v)
- 2
\'/( t) = W ocp.subjectTo( £ )
m(t) = —0.01 u(t)2 ocp.subjectTo( AT_START, s == 0.0 );
ocp.subjectTo( AT_START, v —= 0.0 )3
ocp.s\lbj:ectTo( AT_START, m == 1.0 );
s(0) = 0 s(T) =10 o mamecirol AT | v = 00 )
V(O) = 0 V( T) = O ocp.subjectTo( 0.1 <= v <= 1.7 ):
m(O) = 1 ocp.subjectTo( -1.1 <= u <= 1.1 )
ocp.subjectTo( 5.0 <= T <= 15.0 )
OptimizationAlgorithm algorithm(ocp);
—0.1 < v(t) <17 et sy e e
11 < u(t) < 11
5 < T < 15
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(b) Achieved velocity for the kinematic
trajectory planning approach (—) as well as the

MPC(—)
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